Über die Reaktion zwischen Benzylmalonsäure-bis-(2,4-dichlorphenol)-ester und organischen Säuren

Von

E. Ziegler, H. Junek und J. Schaar

Aus dem Institut für Organische und Pharmazeutische Chemie der Universität
Graz

(Eingegangen am 25. Juni 1959)

Bei der Einwirkung des Benzylmalonsäure-bis-(2,4-dichlorphenol)-esters I auf Chloressigsäure bildet sich unter Abgabe von ${\rm CO_2}$ Chloressigsäure-2,4-dichlorphenolester IV und β -Phenylpropionsäure-2,4-dichlorphenolester VI. Sowohl die Esterals auch die Säure-Komponente kann variiert werden.

Durch Kondensation des Benzylmalonsäure-bis-(2,4-dichlorphenol)-esters I mit einer Reihe von Systemen, die in β -Stellung zueinander leicht lösbare bzw. aktivierte H-Atome haben, sind einige neue Heterocyclen¹ zugänglich geworden. In fast allen Fällen wird der Benzylmalonylrest unter Bildung eines 6-Ringsystemes aufgepfropft.

Ganz anders verhält sich der genannte Ester gegenüber organischen Säuren. Wird z. B. der Ester I mit Chloressigsäure auf Temperaturen um 250° erhitzt, so tritt unter lebhafter CO_2 -Entwicklung eine Reaktion unter Bildung von Chloressigsäure-2,4-dichlorphenolester IV und β -Phenylpropionsäure-2,4-dichlorphenolester VI ein. Die Entstehung dieses Estergemisches ist wohl auf die Bildung des Ketenesters II und dessen weitere Umwandlung in das Anhydrid III zurückzuführen. Letzteres wirkt auf das vorhandene 2,4-Dichlorphenol acylierend und gibt den Ester IV. Dabei wird der Halbester V der Benzylmalonsäure entstehen, der unter Decarboxylierung den β -Phenylpropionsäure-2,4-dichlorphenolester VI gibt.

In analoger Reaktionsfolge liefert Korksäure mit I neben Korksäurebis-(2,4-dichlorphenol)-ester ebenfalls β -Phenylpropionsäure-ester VI.

¹ Literaturzusammenstellung s. *E. Ziegler*, Österr. Chemiker-Ztg. **59**, 155 (1958); *E. Ziegler*, *H. Junek* und *E. Nölken*, Mh. Chem. **90**, 206 (1959).

$$\begin{array}{c} O \\ \longleftarrow O \cdot C_6H_3Cl_2 \\ \longleftarrow O \cdot C_6H_3Cl_2 \\ \bigcirc O \\ O \\ \bigcirc O \\ \bigcirc$$

Auch Benzoesäure reagiert mit I in diesem Sinne. Hierbei entsteht wieder der Ester VI und der schon in der Literatur erwähnte Benzoesäureester des 2,4-Dichlorphenols.

An Stelle des Malonsäureesters I kann man auch andere Phenolester substituierter Malonsäuren einsetzen. So reagiert z. B. Isopropylmalonsäure-bis-phenolester mit Chloressigsäure zu einem Gemisch von Chloressigsäure- und Isovaleriansäure-phenylester. Schließlich gibt tert. Butylmalonsäure-bis-phenolester ein Gemenge der entsprechenden Butylessigsäure- und Benzoesäure-ester.

Die vorliegende Arbeit wurde mit Unterstützung der I. R. Geigy A.G., Basel, durchgeführt, für die wir danken.

Experimenteller Teil

1. Chloressigsäure-2,4-dichlorphenolester IV

9,6 g Benzylmalonsäure-bis-(2,4-dichlorphenol)-ester I und 2,4 g Chloressigsäure werden 1 Stde. auf 250° erhitzt. Das anfallende Öl wird in Äther aufgenommen, die Lösung mit verd. Lauge und $\rm H_2O$ behandelt, getrocknet und der Äther abgedunstet. Ein Teil des Rückstandes destilliert bei Sdp. $\rm 11$

 $155{--}157^{\circ}$ und erstarrt zu Nadeln. Aus Petroläther Schmp. 42°; Ausb. 1,3 g an IV.

 $C_8H_5Cl_3O_2$. Ber. C 40,12, H 2,10, Cl 44,41. Gef. C 40,16, H 2,30, Cl 44,47.

Die Verbindung kann auch aus Chloressigsäure, 2,4-Dichlorphenol und POCl $_3$ bei 120° (½ Stde.) erhalten werden.

2. β-Phenylpropionsäure-2,4-dichlorphenolester VI

Aus dem bei Versuch 1 verbleibenden Destillationsrückstand destilliert bei Sdp. $_{11}$ 205—208° der Ester VI. Aus Petroläther Spieße vom Schmp. 58—60°; Ausb. 4 g.

 $C_{15}H_{12}Cl_2O_2$. Ber. C 61,03, H 4,09, Cl 24,03. Gef. C 60,85, H 4,18, Cl 24,35.

Dieser Ester kann auch aus Dihydrozimtsäure, 2,4-Diehlorphenol und $POCl_3$ synthetisiert werden.

- 3. Korksäure-bis-(2,4-dichlorphenol)-ester und β-Phenyl-propionsäure-2,4-dichlorphenolester VI
- 1,75g Korksäure werden mit 9,6g Ester I1Stde. auf 250° erhitzt. Nach der üblichen Aufarbeitung wird der Ätherrückstand der fraktionierten Destillation unterworfen.
- 1. Fraktion: Sdp.₁₀ 210°, Ausb. 3,7 g, Schmp. 59° ; es liegt der β -Phenyl-propionsäure-2,4-dichlorphenolester VI vor.
- 2. Fraktion: Sdp.₁₀ 275—280°, Ausbeute 2,3 g. Aus Hexan oder Petroläther kristallisiert der Korksäureester in Platten vom Schmp. 55—56°.

4. Benzoesäure-2,4-dichlorphenolester und β-Phenylpropionsäure-2,4-dichlorphenolester

Ein Gemisch von 4,8 g des Esters I mit 1,4 g Benzoesäure wird 1 Stde. auf 250° erhitzt. Nach Schütteln des Rohproduktes mit verd. NaOH wird dieses mit kaltem Alkohol behandelt. Hierbei geht der β-Phenylpropionsäure-2,4-dichlorphenolester in Lösung. Der Rückstand erweist sich als der in der Literatur schon beschriebene Benzoesäure-2,4-dichlorphenolester vom Schmp. 96°.

- 5. Isovaleriansäure-phenylester und Chloressigsäure-phenylester
- 5,9 g Isopropylmalonsäure-bis-phenolester und 2,4 g Chloressigsäure werden 1 Stde. auf 250° erhitzt. Bei der Destillation des Reaktionsgemisches fällt beim Sdp.₁₀ 120° der bereits bekannte Isovaleriansäure-phenylester, beim Sdp.₁₀ 155—157° der ebenfalls schon beschriebene Chloressigsäure-phenylester an.
- 6. Tert. Butylessigsäure-phenylester und Benzoesäurephenylester
- 6,2 g tert. Butylmalonsäure-bis-phenolester werden mit 2,9 g Benzoesäure 90 Min. auf 250° erhitzt. Aufarbeitung analog dem Versuch 1. Nach Abdunsten des Äthers verbleibt ein von Kristallen durchsetzter öliger Rückstand. Der kristalline Anteil erweist sich als Benzoesäure-phenylester, während das Filtrat beim Sdp. $103-105^{\circ}$ als farbloses Öl destilliert. Der Analyse nach liegt hier der tert. Butylessigsäurephenylester vor.

 $C_{12}H_{16}O_2$. Ber. C 75,00, H 8,33. Gef. C 75,28, H 8,10.